Abstract:
Cochlear implant surgery is performed to restore hearing in patients with a range of hearing disorders. To optimise hearing outcomes, trauma during the insertion of a cochlear implant electrode has to be minimised. Factors that contribute to the degree of trauma caused during surgery include: the location of the electrode, type of electrode, and the competence level of the surgeon. Surgical competence depends on knowledge of anatomy and experience in a range of situations, along with technical skills. Thus, during training, a surgeon should be exposed to a range of anatomical variations, where they can learn and practice the intricacies of the surgical procedure, as well as explore different implant options and consequences thereof. Virtual reality simulation offers the ideal platform on which such training can be conducted. In this paper, we discuss a prototype implementation for the visualisation and analysis of electrode trajectories in relation to anatomical variation, prior to its inclusion in a virtual reality training module for cochlear implant surgery.